
 

 

Abstract – As more and more network security threats are 
emerging today, the network-based intrusion detection system 
(NIDS) is one of the most important systems to protect the 
network from attacks and intrusions without modifying end-user 
software. Searching through entire packet headers and payloads, 
NIDSs can identify and classify the packets that contain malicious 
patterns. The most essential technology to the NIDS is an efficient 
multiple-pattern matching algorithm, which performs exact 
string matching between packets and a large set of patterns. This 
paper proposes a novel hierarchical multiple-pattern matching 
algorithm (HMA) for intrusion detection, which is a two-tier and 
cluster-wise matching algorithm. HMA drastically reduces the 
amount of external memory access as well as required memory 
space, enabling an efficient and cost-effective real-time IDS. The 
simulations show that HMA significantly improves the matching 
performance in both the average and the worst cases (about 
1.7~63 times better than the state-of-the-art algorithms).  
Keywords — Network Security,  Intrusion Detection, Content 
Inspection, Matching Algorithm. 

I. INTRODUCTION 

With each passing day, there are more critical threats to the 
data and systems on the network emerging. Different from 
firewalls which only checks specified fields of the packet 
headers, intrusion detection systems (IDSs) are proposed to 
detect the malicious information in the payloads. The 
network-based IDSs (NIDSs) can protect the network systems 
from attacks and intrusions without modifying end-user 
software. The NIDS must be capable of real-time packet 
analyzing and fast enough to keep up with the ever-increasing 
data volume over the network; otherwise the protectorate will 
not be defended strictly. An IDS typically contains a pattern 
database applied to finding harmful packets over the network. 
In the database, each rule compromises several patterns (also 
called signatures) and a matching action (or a series of actions). 
These patterns describe the fingerprints of user behavior. The 
number of patterns is generally a few thousands and the 
lengths of the patterns are varied. The patterns may appear 
anywhere in any packet payload. Therefore, the NIDS requires 
a pattern detection engine capable of in-depth packet 
inspection, which searches the entire packet headers and 
payloads for pattern matching. For example, Snort is an 
open-source NIDS, which is used for eavesdropping the 
packets on a network link, detecting anomalous intruder 
behavior with a set of patterns, and generating logs and alerts 
by the predefined actions [1]. One of the patterns of Nimda 
worm is described as “GET /scripts/root.exe?/c+dir” [2], [3]. 
When the detection engine of Snort finds this pattern existing 
in a packet, the corresponding alert will be generated to warn 
network administrators. It has been pointed out that the pattern 
matching is the most resource intensive tasks in the Snort 

detection engine [4], [5]. Thus in this paper, we focus our 
efforts on the nascent issues of payload inspection for 
multiple-pattern matching. 

Without exception, the most essential technology of a 
detection engine is a powerful multiple-pattern matching 
algorithm, which can efficiently execute exact pattern 
matching to keep up with the growing data volume in the 
network. However, the state-of-the-art matching algorithms are 
impracticable for packet inspection in realistic 
implementations, though on computation complexity the 
Boyer-Moore-based algorithms provided the best average-case 
performance [6], [7]; while the Aho-Corasick-based algorithms 
had the best worst-case performance [9], [10], [14]. This is 
because the performance of processing packets is not only 
affected by the required computation time, but also strongly 
affected by the number of required memory reference. 
Nevertheless, the previous proposed algorithms only addressed 
on reducing the computation time. For example, the latency of 
one external memory access is about 150~250 times more than 
one instruction cycle in the Intel IXP2x00 network processor 
systems [17]. Therefore, the critical issue of designing a 
high-speed detection engine is to reduce the number of 
external memory access.   

This paper proposes a novel hierarchical multiple-pattern 
matching algorithm (HMA) for real-time packet inspection, 
which searches the packet payload for a set of patterns 
simultaneously. HMA is a two-tier and cluster-wise matching 
algorithm that drastically reduces the number of required 
external memory access and pattern comparisons. The memory 
requirement for HMA is very small (less than 350 KB for the 
current Snort pattern set). The average number of external 
memory access of HMA is about only 0.35 per input character, 
which efficaciously improves the performance of the detection 
engine. The simulation results show that the performance of 
HMA is better than that of the state-of the-art algorithms [7], 
[12], [14]. HMA provides better best-case and average-case 
performance as well as controllable worst-case performance. 
Consequently, the proposed HMA is a very cost-effective and 
efficient mechanism that can be employed into the real-time 
NIDSs. 

II. THE HIERARCHICAL MULTIPLE-PATTERN MATCHING 
ALGORITHM 

To improve the performance as well as reduce the size and 
cost of the network equipment, there is a tendency towards 
hardware implementations [5], [15], and generally they have 
both the embedded memory and the external memory elements. 
For example, the Vitesse IQ2000 network processor [16] has 4  
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 FCS Algorithm; 

 Input: A set of patterns P. 

 Output: A set of frequent-common codes F. 
1 Initialize: F ← ∅ ; 
2 For each pattern pi from P, 0 ≤ i<|P| do 
3 __Transfer the pattern pi into a vector M by setting mj = 1 if j∈pi; 

otherwise mj = 0, for all j, 0 ≤ j<| Λ |;  
4 __Read M. For each mj = 1, set the elements of matrix R: rjk = rjk + mk, for 

all k, 0 ≤ k<| Λ |; 
5 While rii ≠ 0, 0 ≤ i<| Λ | do 
6 __Find a frequent common-code f, where rff = max{rii | ∀ i, 0 ≤ i<| Λ |}; 
7 __Add this code into F : F = F ∪ {f}; 
8 __For 0 ≤ i<| Λ | do 
9 ____rii = rii – rfi, if rii >rfi; otherwise, rii = 0; 
10 Return;  

Fig. 1. The FCS algorithm. 

KB data cache, 2 KB for local storage and 2 KB for reserved 
header buffers. As the size of the pattern database and the 
lookup table for the state-of-the-art matching algorithms 
[6]-[14] are usually larger than 300 KB, which is still growing, 
the patterns of the IDS must be stored in the external memory. 
However, frequently accessing the external memory to read 
patterns or tables will extremely reduce the matching 
efficiency, as the latency of the external memory access is very 
long and indeterminist. Therefore, decreasing the amount of 
computational time is not the only way to improve the 
throughput of detection engines. The most important is 
reducing the required number of external memory access.  

As a hierarchical and cluster-wise matching algorithm, the 
proposed HMA effectively reduces the number of external 
memory access and string comparisons, without sacrificing the 
memory space. HMA comprises two stages: the off-line stage 
and the on-line matching stage. The off-line stage constructs 
two small tables (H1 and H2) for hierarchical multiple-pattern 
searching, where a frequent common-code searching algorithm 
(FCS) and a clustering procedure are proposed for the table 
construction. H1 and H2 act as two filters to avoid unnecessary 
external memory access and pattern comparisons respectively, 
and thereby pass the innocuous packets quickly in the on-line 
matching stage. The second-tier matching activates after the 
first-tier is matched, where H2 indicates a small subset of 
patterns that are similar to the input packet. HMA compares 
only a few selected patterns in P with the suspected substrings 
of the packet, instead of comparing all patterns with all 
substrings of the packet. Thus, HMA significantly improves 
the matching performance.  

Let P = {pi} be a set of distinct patterns, where pi is a pattern 
with an identification number (ID) i, and |P| means the number 
of patterns in P. We consider the payload of an input packet T 
and the pattern pi∈P are both strings drawn over Λ , with 
finite-length |T| and |pi| respectively. A multiple-pattern 
matching algorithm is used to search the input T for all 
occurrences of any pattern pi ∈ P where |P|>>1, or to 
corroborate that no pattern of P is in T. The matched patterns 
will be added into the set PM. We note that all matched 
patterns will be found and PM can be used for high-level 

decisions, such as the first-matched-win or the 
high-priority-win.   

A. The Off-line Stage 

Since the patterns may appear anywhere in the packet 
payload, and the packet payload T and the pattern pi are both 
strings drawn over Λ , it is hard to recognize the patterns 
within the payload. We assume that if there is a smaller code 
set (< Λ ), denoted F, to represent the patterns, and F can help 
to distinguish the suspected substrings of T from the innocent 
parts, then the pattern matching will go faster. The FCS 
algorithm is proposed to find F={fi | fi ∈ Λ }, called the 
frequent common-code set, where fi is a frequent common-code. 
In the FCS, we gather the occurrence frequency of each 
character in P, and select the most frequent character into F 
until for each pi there is at least one character of pi belongs to F. 
The FCS algorithm is presented in Fig. 1.  

Thereafter F is used to construct a small hash table, called 
the first-tier hash table (H1). To achieve fast hashing, a direct 
hash table of | Λ | entries is used for H1. The ath entry of H1 is 
denoted H1(a), where each entry has two fields: the frequent 
common-code ID, say H1(a).fid; and the single-symbol pattern 
ID, H1(a).pid. The notation e.f means the value of the field (or 
offset) f at the entry (or address) e. The unused fields of H1 are 
set as null. Since H1 is a small hash table (256 entries in the 
case of one byte coding for example), it can be stored in the 
data cache of microengines. Hereafter H1 acts as a filter in the 
on-line matching to quickly find out whether the packet is a 
suspect that contains a pattern. Namely, HMA makes use of H1 
to narrow the searching field and to focus on the most 
suspected packets. 

It has been pointed out that in the general situations, most 
packets (more than 98%) are innocent. Thus it is time 
consuming to compare all of the patterns in the large P with 
each input packet. We consider that if the patterns in P can be 
distributed into different small clusters based on their 
similarity, and only the patterns in the clusters that are similar 
to the current packet T have to be compared with the current 
one, then the matching process will perform more efficiently.  

Let Pa,b represent a cluster of selected patterns that have the 
same two-character substring ‘ab’, called the clustering pivot, 
namely Pa,b = {pi | ‘ab’∈pi, pi∈P}, where the clustering pivots 
are the similarity of the patterns in the same cluster. An 
|F| × | Λ | matrix N = (na,b) is used to record the current size of 
the cluster Pa,b during the pattern clustering procedure. We 
distribute the patterns based on the clustering pivot in each 
pattern pi, say ‘ab’, where a∈F, b∈ Λ and ‘ab’∈pi. In the 
pattern clustering procedure: (1) Fetch a pattern pi from P one 
at a time. (2a) Scan the pattern. If we can find the clustering 
pivot of pi, say ‘ab’, that a∈F, b∈ Λ , and the current size of 
the cluster Pa,b is zero (na,b = 0), then the pattern pi is grouped 
to the cluster Pa,b. (2b) If there is no such a clustering pivot 
‘ab’ in pi with na,b = 0, then we select the substring of pi, say 
‘cd’, such that c∈F and nc,d is the smallest among all possible  
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Fig. 2 The architecture of hierarchical hash tables. 

clustering pivots of pi. Then the pattern is grouped to the 
cluster Pc,d, which is the smallest cluster that pi can choose. (3) 
After grouping pi into a certain cluster, the size of the 
corresponding cluster is also incremented. Sequentially all 
patterns are distributed into the designate clusters. We note 
that a pattern will be assigned to only one cluster. 

The H2 table is constructed based on the cluster assignments. 
H2 contains the pattern contents and formatted information of 
patterns for fast on-line matching. Consider H2(a, b) is a 
function indicating an entry of H2, which stores the head 
pattern of the cluster Pa,b . Define H2(a, b) = H1(a).fid× | Λ | +b. 
For fast lookup, the patterns in the same cluster Pa,b will hash 
to the same head entry H2(a, b), and be connected by the 
linked-list structure to optimize the memory utilization. Each 
entry H2(a, b) consists of five fields: the pattern size H2(a, 
b).size, the pattern content H2(a, b).data, the position of the 
frequent common-code in the pattern H2(a, b).offset, the 
pattern ID H2(a, b).pid of the saved pattern, and a pointer H2(a, 
b).next that points to the next entry containing the pattern that 
also belongs to the same cluster Pa,b or the fragmented content 
of the current pattern. Transferring the information of patterns 
into a predefined format can speed up the matching procedure.  

Fig. 2 illustrates the logical architecture of the hash tables of 
HMA, where assuming the alphabets are 26 English letters. 
Since the H1 table is only | Λ | (= 26) entries, it can be stored in 
the cache memory. Considering we have six patterns and 
according to FCS, we obtain F={a, e}. Since the first pattern 
‘a’ is a single-pattern, its pid (= 1) is stored in the entry of H1 
table. As the pattern ‘red’ has ‘e’∈F and the clustering pivots 
‘ed’ with ne,d = 0, it is grouped to the cluster Pe,d. Then ne,d is 
incremented. The remainders of the patterns follow the same 
clustering strategy. 

B. The On-line Hierarchical and Cluster-wise Matching 

Since the pattern set P may contain single-symbol patterns 
(|pi| = 1), each character of T must be checked without any 
jump over T. As a hierarchical matching, the on-line matching 
procedure of HMA is divided into two tiers: the first-tier  

 Procedure OnlineMatching(T, H1, H2) 
 Input: Packet payload T, two preprocessed indexing tables: H1 and H2 
 Output: The matched pattern set of T: PM, and its corresponding pid PIDM 
1 Load the input payload into buffer T; 
2 Initialize: PM← ∅ ; 
3 For each T[t] do 

4 __If (k←H1[T[t]].pid) ≠ NULL then PM←PM ∪ {pk} and 
PIDM←PIDM ∪ {k};  /* First-tier matching*/ 

5 __If (k←H1[T[t]].fid) ≠ NULL && t < |T| then  

6 ____Load data from the external RAM at entry H2(T[t], T[t+1]) to a local 
buffer LB; 

7 ____While (k← LB.pid) ≠ NULL do                                
/* Second-tier matching*/ 

8 ______Compare the substring start at T[(t-LB.offset)] with the pattern 
LB.data of length LB.size;  /* Assume no fragmentation here*/ 

9 ______If the comparison is matched then PM←PM ∪ {pk} and 
PIDM←PIDM ∪ {k}; 

10 ______If LB.next ≠ NULL then 

11 ________Load data from the external RAM at entry LB.next to the local 
buffer LB; 

12 ______Else 
13 ________Break; 
14 Return; 

Fig. 3. The on-line matching algorithm. 

matching and the second-tier matching. The on-line matching 
algorithm is shown in Fig. 3. 

The given T is scanned from left to right, and each character 
T[t] is directly used as the hash key to fetch the entry H1(T[t]). 
In the first-tier matching, (1) if H1(T[t]).pid is not null, we 
know that T[t] is a single-symbol pattern, and this matched 
pattern will be added into PM. Whether H1(T[t]).pid is null or 
not, then matching procedure checks the fid field. (2a) If 
H1(T[t]).fid is null (T[t]∉F, T[t]) will be skipped without any 
pattern comparison, and thereby fetching the pattern from 
external memory is unnecessary. Then the next character of 
payload string T[t+1] is processed to check the H1(T[t+1]).pid 
as previous steps, and the matching procedure stays in the 
first-tier matching. Since the size of F is much smaller than 
that of Λ , most characters of T will gain the skips and avoid 
the second-tier matching. Consequently, both the number of 
character comparisons and costly memory access can be 
drastically reduced. (2b) Otherwise, as H1(T[t]).fid is not null, 
T may have a pattern that belongs to the cluster PT[t],T[t+1]. In 
this case, the matching procedure activates the second-tier 
matching to identify the pattern.  

After the first-tier matching, as long as H1(T[t]).fid is not 
null, the matching procedure proceeds to the second-tier 
matching. According to the input T, the hash function H2(T[t], 
T[t+1]) indicates the location of the corresponding cluster 
PT[t],T[t+1]. As a cluster-wise matching, only the patterns in the 
small set PT[t],T[t+1], which are most similar to T, will be loaded 
to the microengine for further checks. In the second-tier 
matching, (1) first the pid field of H2 is checked. (2a) If the 
H2(T[t], T[t+1]).pid is null, it means there is no pattern in the 
cluster PT[t],T[t+1] and no pattern comparison is necessary. 
Afterward the next character T[t+1] will be processed and the 
on-line matching procedure returns to the first-tier matching. 
(2b) Otherwise, if the H2(T[t], T[t+1]).pid is valid, it means 
there are patterns in PT[t],T[t+1] similar to T. Then HMA will 
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compare the pattern content in H2(T[t], T[t+1]) with the 
corresponding substring of T, starting at T[t-H2(T[t], 
T[t+1]).offset] of length H2(T[t], T[t+1]).size. (3) If the next 
field of the last pattern fragment is valid and pointing to the 
next entry, say H2(a, b), similarly the pattern in H2(a, b).data 
will be compared with the substring of T starting at T[t-H2(a, 
b).offset]. The process continues until all patterns in the cluster 
PT[t],T[t+1] are compared. All matched pattern will be added to 
the matched pattern set PM.  

Note that if a pattern pi exists in T, then all characters of pi 
will appear in T. Definitely, the clustering pivot of pattern pi, 
say pi[k] and pi[k+1], will be scanned, say at T[t] and T[t+1], 
where T[t] = pi[k]∈F. When T compares with the patterns in 
the cluster PT[t],T[t+1] during the matching procedure, pi will be 
recognized. Consequently, no patterns in the payload T will be 
missed.  

For example, assume the H1 and H2 tables have been 
constructed as Fig. 2. When the input T is ‘pink’, since all 
characters of T do not belong to F, by only checking T with the 
embedded table H1 HMA can know that T contains no pattern. 
If T = ‘black’, scanning from left to right, HMA will stay in the 
first-tier matching until it matches ‘a’, where ‘a’∈F (H1(a).fid 
is valid) and it is a single-symbol pattern (H1(a).pid = 1). Then 
the second-tier matching activates, and ‘ac’ will be the hash 
keys (clustering pivot). HMA will load the entry from H2(a,c) 
to check H2(a,c).pid. As H2(a,c).pid (= 6) is not null, HMA 
compares the input T with the pattern(s) in Pa,c (where 
H2(a,c).data = ‘black’) and get a match. Afterwards, the 
first-tier matching will continue. Due to ‘c’ and ‘k’∉F, the 
on-line matching of this input T is finished and no second-tier 
matching is necessary. For the input ‘black’, only one pattern 
is loaded from DRAM for exact string comparisons. The 
matching results of T are PM={a, black}. 

III. RESULTS AND DISCUSSIONS 

This section will show the simulation results of HMA, 
compared with the Boyer-Moore-Horspool algorithm (BMH) 
which is deployed in a famous NIDS – Snort [7], the 
Boyer-Moore-Horspool algorithm with a grouped prefix table 
(BM-PH) which is employed in a network-processor-based 
NIDS [12], and the Aho-Corasick algorithm with memory 
compression (AC-C) [14]. We emulate the assembly-like 
microprograms for HMA, BMH, BM-PH and AC-C 
respectively by the RISC instructions of general network 
processors, and calculate the number of instructions and 
memory access needed to process a packet. We assume one 
microprocessor is used in the simulations to simplify the 
evaluation though there are several microengines in the 
network processor systems. 

In the simulations, with detachment we use the free and real 
pattern set released by Snort in Aug. 2004 [1], although the 
pattern set can be self-defined or any commercial pattern set. 
Since the patterns of Snort are written in mixed plain text and 
hex formatted bytecodes, we assume that the alphabet size  

TABLE 1. THE MEMORY REQUIREMENTS. 
 HMA BM-PH BMH AC-C 

Cache memory  O(| Λ |) O(1) O(| Λ |) O(1) 
External memory* O(|F| × | Λ |+|P|) O(| Λ |3+|P|) O(|P| × | Λ |+|P|) O(S+|P|)

*|F| < | Λ | << |P| < S  

(| Λ |) is 256 in the simulations.  

Define NI as the average number of RISC instructions; NL as 
the average number of local memory access for each input 
character required in the pattern matching. NE represents the 
average number of external memory access per input character. 
Respectively wI represents the time required by one instruction 
or one local memory/register access, and wE is the time for one 
external memory access. Thereby, we have the measurements: 
the average computation cycles Iψ = NI × wI; the average 
memory latency Mψ = NE × wE + NL× wI; and the total average 
matching cost Ψ = Iψ + Mψ . In the simulations, note that we 
assume the skip table of BMH is small enough to be loaded 
into the cache memory, and thus only one external memory 
access is counted during the matching process of BMH for 
each pattern; one external memory access is assumed for AC-C 
although it generally requires two memory references for 
fetching the transition matrixes and the matched patterns. In 
the simulations, the payload length is 640 bytes, |P| = 1200, wI 
= 1, and wE = 100. 

The memory requirements of HMA, BM-PH, BMH and 
AC-C are summarized in TABLE 1, including the requirements 
of lookup tables (nodes) and pattern contents (where S is the 
number of states). In the simulations, with |P|=1200, the 
external memory size of HMA is 20192 entries (326.75 KB 
with each entry of 16 bytes, including pattern contents and 
formatted information), where |F|=77; BM-PH needs more 
than 16M entries (16 MB for the skip table, excluding |P| 
entries for pattern contents); BMH needs more than 300K 
entries (300 KB for skip table, excluding |P| entries for pattern 
contents); and AC-C requires 10213 states (439 KB with each 
node of 44 bytes, excluding |P| entries for pattern IDs). 
Consequently, the required memory space of HMA is very 
small. 

In the simulations, the malicious packets are generated by 
randomly choosing patterns from the pattern set P and 
spreading over the packet payloads. An attack load λ  is 
defined to represent the expected number of malicious patterns 
existing in one packet. Except for the patterns in the payload, 
other characters of the payload are randomly drawn from Λ . 
Fig. 4 shows the comparisons of Ψ , Mψ and NE for HMA, 
BM-PH, BMH and AC-C with different λ . Since different 
systems introduce different implementation overheads, we 
extract NE from overall matching cost to examine the 
performance of algorithm itself. This figure demonstrates that 
HMA effectively reduces the number of required external 
memory access (only around 0.35 for each input character). 
We can find that the memory latency predominates the 
matching cost of every approach. This result reflects our 
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Fig. 4. The total processing time ( Ψ ), the memory latency ( Mψ ), and the 
average number of external memory access (NE) for each input character, with 
λ = 4 and λ = 0 respectively. 

 
Fig. 5. The costs of the matching algorithms in the worst-case, the best-case 
and the average situations. 

opinion mentioned previously that the essential issue to design 
a high-speed detection engine is to reduce the number of 
required external memory access. As HMA significantly 
reduces Mψ  without sacrificing Iψ , HMA outperforms 
BM-PH, BMH and AC-C. When λ =0, the performance of 
HMA is 1.7, 63.5, and 7 times better than that of BM-PH, 
BMH and AC-C respectively. Consequently, HMA is very 
appropriate for network environment because generally most 
packets are innocent. The faster to process the innocent 
packets, the more time the detection engine will gain to 
process the malicious packets.  

Since different multiple-pattern matching algorithms have 
different string forms that cause their extreme (best-case or 
worst-case) performance, we examine the performance with all 
permutations of four-character input strings (232 strings). We 
choose the length of four characters because 24.5% of all 
patterns are less than or equal to four characters, and the test 
pool of 4G input strings is large enough for simulations. We 
use this model to approach extreme and average evaluations in 
the practical network. Fig. 5 plots the best-case, the worst-case 
and the average performance for each approach. The matching 
costs shown in this figure exclude the cost for loading the input 
packets from external memory into the processor, as in this 
case, we are interested in the pure costs of the matching 
algorithms required for each input character. Fig. 5 shows that 
in the best case, HMA requires only seven instruction cycles to 
process an input character, which successfully reduces the 
processing delay of innocent packets. In the worst case, HMA 
offers the same performance as AC-C. As improving the 
worst-case performance, HMA can provide stronger defense 
against the attacks under the same hardware expenses. 
Therefore, HMA significantly improve the performance of the 
pattern matching. 

IV. CONCLUSIONS 

A novel hierarchical multiple-pattern matching algorithm 
(HMA) has been proposed in this paper for the real-time IDSs. 
HMA uses the proposed FCS to narrow the searching scope, 
and thereby speeds up the pattern matching processes. 
Furthermore, as a hierarchical and cluster-wise matching 
mechanism, HMA not only drastically reduces the required 
number of memory access as well as string comparisons, but 
also reduces the requirements on memory space. Simulation 
results show that HMA outperforms the state-of-the-art pattern 
matching algorithms. Therefore, HMA enables efficient, 
practical and cost-effective IDSs.     
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